4 research outputs found

    Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables

    Get PDF
    Electrical impedance tomography (EIT) is a medical imaging technique based on the injection of a current or voltage pattern through electrodes on the skin of the patient, and on the reconstruction of the internal conductivity distribution from the voltages collected by the electrodes. Compared to other imaging techniques, EIT shows significant advantages: it does not use ionizing radiation, is non-invasive and is characterized by high temporal resolution. Moreover, its low cost and high portability make it suitable for real-time, bedside monitoring. However, EIT is also characterized by some technical limitations that cause poor spatial resolution. The possibility to design wearable devices based on EIT has recently given a boost to this technology. In this paper we reviewed EIT physical principles, hardware design and major clinical applications, from the classical to a wearable setup. A wireless and wearable EIT system seems a promising frontier of this technology, as it can both facilitate making clinical measurements and open novel scenarios to EIT systems, such as home monitoring

    An Optimized U-Net for Unbalanced Multi-Organ Segmentation

    No full text
    Medical practice is shifting towards the automation and standardization of the most repetitive procedures to speed up the time-to-diagnosis. Semantic segmentation repre-sents a critical stage in identifying a broad spectrum of regions of interest within medical images. Indeed, it identifies relevant objects by attributing to each image pixels a value representing pre-determined classes. Despite the relative ease of visually locating organs in the human body, automated multi-organ segmentation is hindered by the variety of shapes and dimensions of organs and computational resources. Within this context, we propose BIONET, a U-Net-based Fully Convolutional Net-work for efficiently semantically segmenting abdominal organs. BIONET deals with unbalanced data distribution related to the physiological conformation of the considered organs, reaching good accuracy for variable organs dimension with low variance, and a Weighted Global Dice Score score of 93.74 ± 1.1%, and an inference performance of 138 frames per second. Clinical Relevance - This work established a starting point for developing an automatic tool for semantic segmentation of variable-sized organs within the abdomen, reaching considerable accuracy on small and large organs with low variability, reaching a 93.74 ± 1.1 % of Weighted Global Dice Score

    The interaction of SiO2 nanoparticles with the neuronal cell membrane: activation of ionic channels and calcium influx

    Get PDF
    Aim: To clarify the mechanisms of interaction between SiO2 nanoparticles (NPs) and the plasma membrane of GT1\u20137 neuroendocrine cells, with focus on the activation of calcium-permeable channels, responsible for the long lasting calcium influx and modulation of the electrical activity in these cells. Materials & methods: Nontoxic doses of SiO2 NPs were administered to the cells. Calcium imaging and patch clamp techniques were combined with a pharmacological approach. Results: TRPV4, Cx and Panx-like channels are the major components of the NP-induced inward currents. Preincubation with the antioxidant N-acetyl-L-cysteine strongly reduced the [Ca2+]i increase. Conclusion: These findings suggest that SiO2 NPs directly activate a complex set of calcium-permeable channels, possibly by catalyzing free radical production
    corecore